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Abstract: A nonparametric model for daily rainfall simulation is presented. Nearest neighbour methods are used to conditionally
simulate rainfall spelis and amounts. A “local” subset of the observed record is used to formulate the conditional densities needed
for simuiation. This provides an effective yet simple way to model local and seasonal features in the observed rainfall time series.
The model is applied in two stages. First dry and wet spell lengths are conditionally simulated. Next rainfall amounts for each day
of the wet spell are simufated assuming an order one Markov dependence structure. Higher order dependence is modelled by
considering the number of days from start of the spell as an additional variable. Rainfali distributional characteristics are observed
to have distinctly different characteristics depending on the length of the wet spell. A procedure is developed 1o reproduce such
differences in the simulations, The model is applied to 123 years of daily rainfall from Sydney, Australia.

L. INTRODUCTION

Modelling precipitation is of importance 1o several disciplines
in science and engineering. Synthetic precipitation sequences
are used in applications as diverse as agricultural planning,
reservoir and watershed management, erosion prediction,
design of landgfills, and design of facilities for storage and
disposal of hazardous wastes. While the time scales modelied
range from a year to a few minutes, simulation of daily
precipitation  has attracted the most attention. Both
mathematical and physically based approaches have been
proposed for synthesising precipitation, atthough complexities
in the rainfall generation mechanism have limited the scope
and applicability of the latter. Mathematical precipitation
simulation models consider rainfall as a random process and
attempt to simelate  daily rainfall sequences that are
“representative” of the observed record. This invelves
reproducing in stmulations, certain features that symbolise a
daily rainfall time-series. Some of these are:

Fractions of wet and dry days

Distribution of wet and dry spell lengths

Dependence characteristics of the spells

The first two or three moments of rainfail amounts
Diependence characteristies of rainfall

Seasonal and long term dependencies in rainfall. For
esample, the rainfall generation mechanism may be
highly dependent on long-term climatic features such as
the El-Nino Southern Oscillation. Periodicities associated
with such features would then be desirable in the
precipitation simulations,
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Maost precipitation simulation models reproduce only a few of
the above mentioncd features, Attempts to develop a more
representative approach result in over-parameterisation. There
is need for approaches that are capable of simulating
sequences that are representative of the cbserved precipitation
record, are computationally robust, and, are intuitively simpie
to understand, accept, and use in real applicaticns. One such
approach is presented in this paper.

Our rainfali simulation strategy is based on nonparametric
nearest neighbour methods  [Scenr, 19921, It involves
conditionally resampling values from the observed record
based on assumptions abowt the dependence structure of
wet/dry spelts and rainfall amounts. Use of nonparametric
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inethods enables accurate representation of the distributional
features that characterise rainfall. As a result, moments {mean,
variance, skewness) and dependesce properties {serial
corretations and nonlinear conditional expectations) are hoth
naturally modelled. Resulting simulations are hence more
representative of the observed data than those from
contemporary precipitation simulation models. We illustrate
the use and utility of the approach by application to a 123 year
long daily precipitation record from Sydrney, Australia.

‘What follows is a discussion of traditional approaches for
modelling daily precipitation. This is followed by a brief
introduction or nonparametric methods and how they can be
applied to simulation. Next, the proposed simulation approach
is outlined. Resulis from application of the proposed approach
to daily precipitation follows. We coaclude with a discussion
on the advantage of using the nonparametric approach over
conventional precipitation models and mention some possible
alterations to the present model structure that should increase
its applicability to more diverse situations and scenarios.

2. BACKGROUND
2.1. Traditional approaches

Researchers from several disciplines have proposed both
physical and stochastic approaches for synthesising daily
rainfall. Complexities i the underlying rainfall generation
mechanism limits the utility of physics based approaches.
Statistical models treat rainfall as composed of two random
processes — rainfall occurrence {denoting whether a day is wet
or dry, or, more generally, the length of consecutive wet or
dry days) and rainfzll amount on a wet day. Rainfall
occurrence has been modelled as a Markov process, the state
{wet or dry) of the cusrent and a few prior days deciding the
state of the day that follows [Stern and Coe, 19841
Transformations of the Markov transition probability have
been used to rewrite the model as a generalised linear model
(GLM) [Nelder and Wedderburn, 1972}, This has resulted in
simplified procedures for parameter estimation and the ready
use of commonly available statistical packages that have in-
buili GLM modules. The other approach that has been used is
to represent the length of the current dry or wet speil as a
random variable and model it as an alterpating renewal
process. Both approaches are appealing, although researchers
have noted [Woolhiser, 1992] that parameter estimation is
often a problem with alternating renewal process approaches,



Once a day has been classified as wet, the rainfall amount can
be simulated using a number of plausible approaches.
Unconditional simulation assuming a generic distribution, or
conditionai simulation conditioned on the state of the past few
days (wet or dry) is an often used strategy. It has been noted
[Buishand, 19771 that rainfall tends to have different
probability distributions depending on whether the day is a
solitary wet day, or whether it is bounded on ore or both sides
by another wet day. As a result, some models [Buishand,
1977, Chapman, 1997] try to fit distributions to each of these
three classes. Once the distributions have been fitted, values
are simulated depending on which of the above three classes
the current day falls in.

Several probability distributions have been associated with
rainfall spells and amounts. Some of the distributions that
have been used to characterise spelis lengths are - truncated
negative binomial, truncated geometric and mixtures of two
geometric distributions. Rainfall amounts form a highly
skewed series and have been characterised by several
positively skewed distribations such as gamma, shifted
gamma, exponential, mixed expenential, kappa, and Weiboll.
Readers are referred to [Woolhiser, 19921 for a good review of
daily rainfall simulation models and references to the
distributional choices cited above. A “moving window”
approach to model seasonality was recently preseated by
{Rajagopalan et al., 1996] for modelling the seasonal features
in rainfall states (the occurrence of a wet or dry day in a year),
This approach is conceptually similar to the use of discrete
“seasons’ except that the discrete season is a period centered
about the current day of interest {the period being called a
“moving window’ since it moves as we go to the next day in
the time series), The need to choose an appropriate number of
Fourter series terms for different statistics of interest, or fo
deal with discontinuities at the edge of each fixed discrete
seascn, is obviated. This is the approach used in the work
presented here.

A rainfall time series has a marked seasonal behaviour,
Seasonality has traditionally been represented in two ways.
Some rescarchers impose a seasonal trend on the parameters
that describe the model (e.g., 2 polynomial or more commonly
a Tourier representation for cach of the important model
parameters), In other cases, the model 15 applied to discrete
segrments of the year (seasons or months),

While traditional rainfall simulators work well under certain
conditions, they usuaily require modifications if applied to
data from other climatic regimes. In some cases different
model forms (distributional or dependence characteristics) are
needed for the same location in different seasons of the year.

Some typical difficelties in using such models are:

Representation  of  distributional  characteristics

Distributions of rainfall amounts or spell lengths are

crucial to the structure of the simulated time series. The

selection of an appropriate distribution is difficult for a

univariate and especially for a multivariate variable

space.

»  Represeniation of dependence characteristics ~ Models
assuming a Markovian representation for rainfall
reproduce the assumed memory well in the simulations.
However, most applications assume an order one model
for simplicity.

@
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o Representation of seasonality — Modelling seasonality
sometimes results in difficulties in parameter estimation,
leading researchers to assume stationarity in discrete
segments of the annual cycie. Such representations offer a
poor approximation of seasonal characteristics in the
rainfall data.

The simulation approach presented here offers a feasible
alternative that does not have the problems mentioned above.
Nonparametric estimates of the joint and conditional density
are used, thus avoiding the problems associated with
representation  of  distributional  and dependence
characteristics. The use of a local neighbourhood (moving
window} for each conditional simulation reproduces seasonal
characteristics  effectively. A short  background on
nonparametric approaches and their utility in simulation and
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2.2. Monparametric methods

A parametric regression model is fully defined or indexed by
a finite set of parameters. Examples include linear regression,
where the parameters arc the slope and intercept, and a
Gaussian probability density function that is completely
specified by a scale and lovation parameter. Scort [1992] has
an interesting discussion aimed at defining when an estimator
is nonparametric. He suggests that a necessary condition for
an estimator to be nonparametric is that it “work™ for a large
class of functions, ¢.g., all once and twice differentiable
functions, An important point he makes is that for an
estimator to be nonparametric, the inflaence of any data point
% on the nonparametric regression estimate should vanish
asymptotically for any O<e<lx-x). This is not true for
parametric estimators. For example, it is well known that
linear regression estimators arc globally influenced by the
presence of outliers.

A nonparametric density estimator works in a way similar to a
nonparametric regression estimator. The density s estimated
using observations within a local neighbourhood of the point
of estimation. While the familiar histogram is an example of 2
crude nonparametric density estimator, kernel and nearest
neighbour techniques are the more efficient choices. The
underlying idea in these is same as the histogram - count the
relative frequency of the data lying in a local neighbourhood
about the point of estimation. For a histogram, this
neighbourhood is a fixed discrete bin. With kerne! techniques
the neighbourhood depends on the extent of the kernel
functions (smooth functions such as a Gaussian PDF, centred
at each sample observation). With nearest neighbour
techniques, the neighbourhood is composed of the “k” nearest
neighbours of the estimation point, k being an appropriately
chasen integer. Scort [1992] and Silverman [1986] are good
introductory texts on nonparametric methods, Researchers in
hydrology have only recently started applying these methods
to hydrology, Some recent nonparametric  hydrologic
applications relevant to hydrologic simulation are: streamflow
simulation and disaggregation using nearest neighbour and
kernel methods {Lall and Sharma, 1996; Sharma et al., 1997
Tarboton et al, 1997}, simulation of raiafall using a
nonhomogenous Markov model [Rajagopalan et al., 19961
simulation of rainfall spells using a seasonally homogenous
resampling approach [Lall et al, 1996]: and simulation of
multivariate daily weather sequences using kernel methods
{Rajagopalan et af.. 1997].



Multivariate  probability  density  estimation i a
steaightforward extension of the univariate case. A conditional
probabitity distribution is a slice of the joint distribution at a
given conditioning plane (a conditioning line in case of an
order one model). In the nearest neighbour context Lall and
Sharma [1996] have developed a conditional probability
distribution  based on the nearest neighbours of the
conditioning plane. This defines a relative probability or
weight associated with each neighbour and forms the basis for
the resampling approach presented in the next section. These
conditional probabilities are estimated as:
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where p{i} is the probability associated with the i"th nearest
neighbour and k s the number of neighbours considered.
Since the above equation depends only on the observed data
and their relative locations in relation to the conditioning
_ plane, issues related to distribution selection are automatically
avoided. Additionally, problems of boundary leakage (of
importance  to  most hydrological variables including
precipitation) are automatically resolved. For more details
about the conditional probability estimator in (1), its statistical
attributes, and illustrations of its use in the context of
streamilow simulation, readers are referred to Lall and
Sharma [ 19961,

The number of neighbours "k can be chosen using any
appropriate order selaction strategy such as Generalised Cross
Validation (GCV) [Craven and Wahba, 1979]. Lall and
Sharma [1996] also suggest an ad-hoc rufe for choosing k,
stated as:

L =+n

where n i3 the length of the observed sample record. This rule
has been tested and found to compare well with the GCV
chosen optimal. For stmplicity, we shall use the above rule in
the nonparametric daily rainfall simulation model presented
next.

(2

3. PRECIPITATION SIMULATION MODEL

This section describes the nonparametric mode! for simulation
of daily precipitation sequences. The model consists of two
phases. The first phase invoives conditional simulation of welt
and dry spell lengths. The second phase involves simulation
of precipitation amounts for each wet spell. All significant
dependencies (in spells or amounts) are modelled. Seasonality
15 modelled by considering a “moving window” centred at the
day being simulated. The window forms a local (hence
seasonally representative) subset of the data. Values (for all
vears) falling within this window are used to estimate the
conditional probability. Similar windows are used for
simulation of both rainfall spells and amounts. Algorithmic
details for each of these are presented next.
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3.1. Model algorithm

Here we present the algorithm used for simulation of daily
rainfall. The algorithm consists of three paris

A — Pre-processing of observations

B - Simulating dry and wet spel lengths, and,

C - Simulating rainfall amounts for all days in a wet spell.

311 Pre-processing

Both discrete and continuous variables are used in formulating
the nonparametric simulation procedure. This necessitates the
use of scaling factors to ensure that each variable has the same
weighting in selection of nearest neighbours. For example,
simulation of rainfall amounts (discussed later) uses the
amount for the previous day, the day from start of the spell,
and the length of the wet spell as the three variables that
comprise the conditioning vector. Hence, standard deviations
of each are estimated before hand and variables scaled when
estimating euclidean distances for identification of nearest
neighbours. Localised estimated of the standard deviation are
used to account for possible seasonat variations. The scaling
weights are then estimated as:

Wi = lf.s“jf (3)

where w;, denotes the weight for variable j on day ¢ of the
calendar year, and s, is the estimated local standard deviation
(standard deviation for all values falling within moving
window centered at day r of the year).
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The conditioning variable used for simulation of dry spell
lengths is taken to be the number of days in the preceding wet
spell. This choice was based on the strong (and statistically
significant) dependency that was observed between these two
variables, The conditioning variable for stmulation of wet
spell leagths i3 taken as the length of the preceding dry spell.

The algorithin for the spell simulation component starting at

day ¢ in the calendar year is as follows:

. Formulate moving window centred at day t of the year.
The window rtecords only the calendar dates that fall
within the window. Observations correspoading to these
dates (for all years of the observed record) then form the
local subset used for resampling,

Spell lengths

2. Identify the length of each dry speli originating within the
moving window, Once this is done, record the following
- the length of the wet speli that precedes the dry spell
(m,,;} and, the length of the dry spell (rg).

3. Identify the k nearest neighbours of the previous

occurrence of the conditioning variable (the wet spell
fength n,). This is equivalent to estimation of the
cuclidean distance between the conditioning value (n,,)
and cach of the wet spell lengths recorded in step 2. This
distance is given as:

{4)
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where [ ranges from 1 to the number of observations in
the window. Observations haviag the k smallest distances
are the k nearest aeighbours of the conditioning plane.



Estimate the conditional probability in {1) (In reality this
needs to be estimated only once and hence is estimated in
the pre-processing stage). Randomly select a neighbour
bhased on this estimate, The dry speli length
cortesponding to the chosen neighbour is the new
simuiation {this is denoted as ny).

Re-formulate the moving window centred at the new
value of ¢ (the day following the end of the dry spell -
r+hy where ny, is the dry spell length simulated in step 4).
Identify the length of each wet spell that originates in the
window and record the following — the dry speli length
preceding the wet spell (ny), and, the length of each wet
spell (1)

Identify the nearest neighbours using dry spelf length as
the new conditioning variable. Distances are now
calculated using the equation

d;

(3)
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where f, ts the dry spell length simulated in step 4.
Randomly select a neighbour using the conditional
probability of (1), The wet spell length corresponding to
this selection compietes the spell simulation part of the
maodel,

=J

As no prior values are available at the start of the simutation,
the algorithm is inftialised randomly by choosing a spell (wet
or dry) in the moving window. If this is a dry spell, the
following wet spell length is simulated using step 5 of the
above algorithm. If it is a wet spell, rainfall amounts for each
of the days are simulated using the procedure described next.

313, Rainfali amounts

Rainfall amounts are conditioned on three variables — the day
from start of the wet spell, the length of the current wet spell,
and the amount on the previous day in the spell (not
considered for the first day of the speli). The algorithmic
details of the rainfall amount simulation phase in the model
are as follows:

I. Formulate moving window centred at the first day of the
wet spell.

Identify the rainfall amounts (non.zero valoes) that fall
within the window for the entire historical record. This
forms ihe local subset that is used to resample the daily
rainfall values. Record the following variables — days
from start of the spell (£), the length of the current wet
spell (n,), the amount for the present day (p;), and the
amount for the day that follows (p;,). Days for which p,,
is zere (last day in wet spell) are not considered.

Identify the & nearest neighbours of the conditioning
plane. These neighbours are chosen using a scaled
distance measure. The conditioning variables used are the
number of days from start of the wet spell (), the length
of the current wet spell (n.,,), and the rainfall amount on
the previous day in the spell {p). The third variable
{rainfall amount) 15 not used when simulating the first day
1 the spell, The distance is calculated as:

Z.
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di = 'J(Wlt ([1 - 1! })2 + (“"3,- (N =My )}2 + (Wih (pr - pi)}z
(6}
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where wy, wy, and wy, are the weights associated with the
three conditioning variables (these weighis being
estimated in the pre-processing stage using equation (3)).
Randomly identify a neighbour using the conditional
probabilities in (1). The rainfall amount for the day that
follows the chosen day {p;,, \f { is the chosen day) is the
new simulated amount,

5. Repeat the procedure till end of spell is reached.

The above procedure is sirnple and easy to use and provides a
natural way to model dependence in the rainfall time series.
Use of the day from start of speli as a conditioning variable
provides an e¢asy way to approximate any higher order
dependence that may be present in individual spells. The
dependence of probability distributions on the nature and
length of the spell is adequately modelied by use of wet spell
iength as one of the conditioning variables. Use of the moving
window provides an efficient way to model seasonal features,
The conditional probability in {1} ensures that sample
distributional properties are appropriately represented ia the
simulations. Although more elaborate  strategies for
identifying the length of the moving window could be
formulated, we chose a fixed value of 60 days in our
applications. Applications of the nomparametric simulation
model to 123 years of daily rainfall data from Sydney,
Australia is given next.

4. APPLICATION

Here we describe the application of the nonparametric daily
rainfall simulation model described in the previous section (o
123 years of daily rainfalt {1859 to 1981) from Sydney,
Australia. Seasonal characteristics of the observed record are
illustrated in Figure 1. While the first three variables have
marked seasonal characteristics, skewness does not show a
clear seasonal trend. It is interesting to note that the average
precipitation is relatively lower in the “wetter” second half of
the year. Sudden short bursts of rainfall in the first half could
be a possible reason for this behaviour.
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Seasonal variability in historical daily precipitation record.
“WetFrac” denotes the fraction of wet days. “StDev” refers o
the estimated standard deviation. All statistics are estimated
asing a fixed window length of 60 days. Only non-zero values
are used in estimating the mean, standard deviation and
skewness trom the data.



The nonparametric simulation model was applied to simulate
30 samples of daily rainfall of the same leagth as the historical
record (123 years). Figure 2 illustrates seasonal features of
one of the simulated samples. Note the similarity in Figures 1
and 2.
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Figure 2

Seasonal features of one of the samples simulated using the
ronparametric rainfali model.

For ease of presentation, the results from the simulations are
presented at 2 monthly scale. Figure 3 illustrates average dry
and wet spelt lengths for each month. Standard deviations of
the dry and wet spell lengths are shown in Figure 4. The
continuous line in both figures shows the historical statistic
(average or standard deviation as the case may be). A boxpiot
is used to illustrate the variability in each statistic across the
30 simulations. A boxplot, as used here, consists of a line in
the middle of the box denoting the 50% quantile (median), the
box with edges representing 25% and 73% quantiles, and
whiskers that extend to the 5% and 95% quantiles of the
statistics shown.

=

=)
2 g
@
3 i,
= i
g o o B

- £ .
g o o P e
= +
3 2 ik
= o]

Jan. Apr. Jul. Oct.
JE
&
o
L1
—
B @
o o
1%} }
s o ¥
= od
fsh}
=
Jan. Apr. Jul. Cct.
Figure 3

Average observed and simulated dry and wet spell lengths (in
days}.
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Figure 4
Standard deviations of observed and simulated dry and wet
spell leagths, “Std.” refers to standard deviation tn the figure.

The simulated spell length means and standard deviations
(Figures 3 and 4) compare well with the observed spell
lengths, It is noticeable that both wet and dry spell lengths
have marked seasonal characieristics, both in the averages and
the standard deviations, These features are reproduced well in
the simulations frem the nonparametric model.

Figure 5 iilustrates an important feature of the Sydney rainfail
time series. Shown are the observed and simulated average
rainfalls associated with wet spells that last 1, 2,3, 4, 5, and 6
or more days. Imterestingly, for most months the average
rainfall amounts tend to increase as spells get longer. This is
contrary to intuition although researchers [Buishand, 1977;
Chapman, 19971 have noted that average rainfall on solitary
wet days is usually smaller than for longer spells, Simulation
strategies that assume stationarity in rainfall amounts for all
spell lengths are unlikely to produce meaningful resubts.
Modeis that specify different distributicns for days that are
bounded by 0, | or 2 wet days {Buishand, 1977], would
perform better. However, assumplions of stationarity for long
spells (longer than 2 days) would distort the simulated rainfall
amounts.

As can be observed from Figure 35, the noaparametric
simulation model is able tc accurately represent this
nonstationarity in the rainfall generation mechanism. Use of /,
the number of days from start of the spell, and n,, the wet
spell length, as two of the conditioning variables in the
simulation algerithm {see previous section) is the Hkely cause
of this accuracy.

Several other characteristics of the simulations were estimated
and compared to the observations. Some of these were
distributional characteristics (nonparametric estimates of the
probability density of rainfall for different months of the



year), higher order moment statistics (skewness and kurtosis) illustrated the ability of the nonparametric model 10 simulate

and dependence characteristics in the spell and amount sampies that are “‘representative” of the historical record.
processes. These are not presented for lack of space but are

available from the authors on request. Although model simulations are not currently
capable of representing loag range dependence
Wet Spell Length = 1 Wet Spell Length = 2 characteristics as represented by long-term
a &@/\ - . climatic .ﬂuctu.ati()r.xs, _work 15 cgrrent‘iy in
By, Eﬁ%ﬂ | i s ’ _E:I“;Jra\éa L, . progress in this Fj[l’ﬁCthﬁ. Use of additional
z flate o 575 Z : wi*@ conditioning  variables  that thave similar
periodicities as are observed in atmospheric
Jan. Apr Jud. Oct. Jan.  Apr. Jut. Cet. indices such as the Southern Oscillation Index, is

being investigated. Results from this shall be

discussed in another paper.
Wet Spell Length =3 Wat Spell Length = 4 pap

t l;' 1 g;—l—!' s 1
’ EH’%“’%L?@EEQ'#{@@@ ' Eﬁj@%é Plbadh | 6 REFERENCES

Buishand, T.A.. Stochastic modeling of daily

Jan. Apr. Juk. Oct. Jan, Apr. Jul, Qet.

rainfall sequences, Meded.
Lamdbouwhogesch. Wageningen, 77 (3),
Wet Spell Length = 5 Wet Spell Length = 6 or more 211 pp, 1977,

‘ Chapman, T.G., Stochastic models for daily
o ‘ rainfall in the Western Pacific, Maths and
ﬁgﬂ‘g@éﬂﬁﬂ ! Computers in Simulation (in press), 1997,

351

. r H I H Lo 16 . 1 .
[eetig, eba | [ateee
] * §
® Craven, P, and G. Wahba, Smoothing noisy data
Jan. Apr. Jul. Oet. Jan. Agr. Jui. Oct. with spline fuactions, Mumerical
. i Mathemativs, 31, 377-403, 1979,
o Flgur.e 2 ) Lall, U., B. Rajagopalan, and D.G. Tarboton, A nonparametric
Average rainfall (in mm) as a function of spell length. Spell wet/dry spell model for resampling daily precipitation,
lengths of 1, 2, 3, 4, 5 and & or more days are considered. Water Resources Research, 32 (9), 2803_2@,23. 1996,

Lall, U, and A. Sharma, A nearest neighbor bootstrap for time
series resampling, Warer Resources Research, 32 (3).

5. SUMMARY AND COMCLUSIONS &679-693. 1906,
A nonparametric approach for daily rainfall simulation was Nelder, I.A., and RW.M. Wedderburn, Generalized [inear
developed. Nonparametric nearest neighbour methods were models, Journal of Royal Sratistical Society A, 135, 370G-
employed to estimate the conditional probabilities of rainfall 384,1972.
spell and amounts. These nearest neighbours were selected Rajagopalan, B., U. Lall. and DG, Tarboton,
from a local neighbourbood of the current calendar day, Use Nonhemogenous Markov model for daily precipitation.
of this local neighbourhood resulted in an  accurate Journal of Hydrologic Engineering, 1 (1}, 33-40, 1996
representation of seasonal characteristics in the observed Rajagopalan, B., U, Lall, D.G. Tarboton, and D.5. Bowles,
rainfall record. Multivariate Nonparametric Resampling Scheme For
Generation of Daily Weather Variables, Srochastic
A conditional simulation approach was used to simulate dry Hydrology & Hydraulics, 11 (1), 65-83, 1997,
and wet spell lengths. The simulated dry spells were Scott, DW., Multivariare Density  Estimation: Theory,
conditioned an the number of days in the prior wet spell. Wet Practice and Visualisation, 317 pp., John Wiley & Sons
spell fengths were simulated conditional to the previous dry Inc., New York, 1992,
spell length. The nearest neighbour approach provided a Sharma, A., D.G. Tarboton, and U. Lall, Stueamflow
stmple framework to formulate the conditional probabilities Simulation - a Nonparametric Approach, Warer
needed tor simulatios, Resources Research, 33 {2), 291-308, 1997,
Stlverman, B.W., Density estimation for statistics and data
Rainfall amounts were simulated once the wet speil fength had analysis, 173 pp., Chapman and Hall, New York, 1986,
been abtained. Simulation of amounts was conditional to two Stern, R.D., and R. Coe, A model fitting analysis of daily
variables — the rainfalf amount on the previous day {(assuming rainfalt data, Jeurnal of Royal Swtistical Sociery A, 147
order one dependence in the rainfall time series), and the {13, 1-34, 1984,
number of days from start of the current wet spell. The nearest Tarboton, D.G., A. Sharma, and U. Lall, Disaggregation
neighbour methodology was again used. Procedures for Stochastic Hydrology  based  om
Nonparametric Density Estimation, Warer Resources
The model was applied to simulate daily rainfall from 123 Research (under review), 1997,
vears of data from Sydney, Australia. The simulations were Woolhiser, D.A., Modeling daily precipitation - progress and
tested for therr ability to reproduce seasonal, dependence and problems, in Statistics in rthe environmenmtal and earth
distributional  characteristics.  Results from these tests sciences, edited by AT, Walden, and ¥, Guttorp, pp.

306, Edward Arnold, Loadon, UK., 1992,

110



